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Abstract

Currently, POSTGRES is about 90,000 lines of code in C and is being used by assorted ‘‘bold and

brave’’ early users. The system has been constructed by a team of 5 part time students led by a full time

chief programmer over the last three years. During this period, we have made a large number of design

and implementation choices. Moreover, in some areas we would do things quite differently if we were to

start from scratch again. The purpose of this paper is to reflect on the design and implementation decisions

we made and to offer advice to implementors who might follow some of our paths. In this paper we res-

trict our attention to the DBMS ‘‘backend’’ functions. In another paper some of us treat PICASSO, the

application development environment that is being built on top of POSTGRES.

1. INTRODUCTION

Current relational DBMSs are oriented toward efficient support for business data processing applica-

tions where large numbers of instances of fixed format records must be stored and accessed. Traditional

transaction management and query facilities for this application area will be termed data management.

To satisfy the broader application community outside of business applications, DBMSs will have to

expand to offer services in two other dimensions, namely object management and knowledge manage-

ment. Object management entails efficiently storing and manipulating non-traditional data types such as

bitmaps, icons, text, and polygons. Object management problems abound in CAD and many other

engineering applications. Object-oriented programming languages and data bases provide services in this

area.
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Knowledge management entails the ability to store and enforce a collection of rules that are part of

the semantics of an application. Such rules describe integrity constraints about the application, as well as

allowing the derivation of data that is not directly stored in the data base.

We now indicate a simple example which requires services in all three dimensions. Consider an

application that stores and manipulates text and graphics to facilitate the layout of newspaper copy. Such a

system will be naturally integrated with subscription and classified advertisement data. Billing customers

for these services will require traditional data management services. In addition, this application must store

non-traditional objects including text, bitmaps (pictures), and icons (the banner across the top of the paper).

Hence, object management services are required. Lastly, there are many rules that control newspaper lay-

out. For example, the ad copy for two major department stores can never be on facing pages. Support for

such rules is desirable in this application.

We believe that most real world data management problems are three dimensional. Like the news-

paper application, they will require a three dimensional solution. The fundamental goal of POSTGRES

[STON86, WENS88] is to provide support for such three dimensional applications. To the best of our

knowledge it is the first three dimensional data manager. However, we expect that most DBMSs will fol-

low the lead of POSTGRES into these new dimensions.

To accomplish this objective, object and rule management capabilities were added to the services

found in a traditional data manager. In the next two sections we describe the capabilities provided and

comment on our implementation decisions. Then, in Section 4 we discuss the novel no-overwrite storage

manager that we implemented in POSTGRES. Other papers have explained the major POSTGRES design

decisions in these areas, and we assume that the reader is familiar with [ROWE87] on the data model,

[STON88] on rule management, and [STON87] on storage management. Hence, in these three sections we

stress considerations that led to our design, what we liked about the design, and the mistakes that we felt

we made. Where appropriate we make suggestions for future implementors based on our experience.

Section 5 of the paper comments on specific issues in the implementation of POSTGRES and cri-

tiques the choices that we made. In this section we discuss how we interfaced to the operating system, our

choice of programming languages and some of our implementation philosophy.

The final section concludes with some performance measurements of POSTGRES. Specifically, we

report the results of some of the queries in the Wisconsin benchmark [BITT83].

2. THE POSTGRES DATA MODEL AND QUERY LANGUAGE

2.1. Introduction

Traditional relational DBMSs support a data model consisting of a collection of named relations,

each attribute of which has a specific type. In current commercial systems possible types are floating point
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numbers, integers, character strings, and dates. It is commonly recognized that this data model is

insufficient for non-business data processing applications. In designing a new data model and query

language, we were guided by the following three design criteria.

1) orientation toward data base access from a query language

We expect POSTGRES users to interact with their data bases primarily by using the set-oriented

query language, POSTQUEL. Hence, inclusion of a query language, an optimizer and the corresponding

run-time system was a primary design goal.

It is also possible to interact with a POSTGRES data base by utilizing a navigational interface. Such

interfaces were popularized by the CODASYL proposals of the 1970’s and are enjoying a renaissance in

recent object-oriented proposals such as ORION [BANE87] or O2 [VELE89]. Because POSTGRES gives

each record a unique identifier (OID), it is possible to use the identifier for one record as a data item in a

second record. Using optionally definable indexes on OIDs, it is then possible to navigate from one record

to the next by running one query per navigation step. In addition, POSTGRES allows a user to define func-

tions (methods) to the DBMS. Such functions can intersperce statements in a programming language,

query language commands, and direct calls to internal POSTGRES interfaces. The ability to directly exe-

cute functions which we call fast path is provided in POSTGRES and allows a user to navigate the data

base by executing a sequence of functions.

However, we do not expect this sort of mechanism to become popular. All navigational interfaces

have the same disadvantages of CODASYL systems, namely the application programmer must construct a

query plan for each task he wants to accomplish and substantial application maintenance is required when-

ever the schema changes.

2) Orientation toward multi-lingual access

We could have picked our favorite programming language and then tightly coupled POSTGRES to

the compiler and run-time environment of that language. Such an approach would offer persistence for

variables in this programming language, as well as a query language integrated with the control statements

of the language. This approach has been followed in ODE [AGRA89] and many of the recent commercial

start-ups doing object-oriented data bases.

Our point of view is that most data bases are accessed by programs written in several different

languages, and we do not see any programming language Esperanto on the horizon. Therefore, most appli-

cation development organizations are multi-lingual and require access to a data base from different

languages. In addition, data base application packages that a user might acquire, for example to perform

statistical or spreadsheet services, are often not coded in the language being used for developing applica-

tions. Again, this results in a multi-lingual environment.
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Hence, POSTGRES is programming language neutral, that is, it can be called from many different

languages. Tight integration of POSTGRES to a particular language requires compiler extensions and a

run time system specific to that programming language. One of us has built an implementation of per-

sistent CLOS (Common LISP Object System) on top of POSTGRES. Persistent CLOS (or persistent X for

any programming language, X) is inevitably language specific. The run-time system must map the disk

representation for language objects, including pointers, into the main memory representation expected by

the language. Moreover, an object cache must be maintained in the program address space, or performance

will suffer badly. Both tasks are inherently language specific.

We expect many language specific interfaces to be built for POSTGRES and believe that the query

language plus the fast path interface available in POSTGRES offers a powerful, convenient abstraction

against which to build these programming language interfaces.

3) small number of concepts

We tried to build a data model with as few concepts as possible. The relational model succeeded in

replacing previous data models in part because of its simplicity. We wanted to have as few concepts as

possible so that users would have minimum complexity to contend with. Hence, POSTGRES leverages the

following three constructs:

types

functions

inheritance

In the next subsection we briefly review the POSTGRES data model. Then, we turn to a short description

of POSTQUEL and fast path. We conclude the section with a discussion of whether POSTGRES is

object-oriented followed by a critique of our data model and query language.

2.2. The POSTGRES Data Model

As mentioned in the previous section POSTGRES leverages types and functions as fundamental

constructs. There are three kinds of types in POSTGRES and three kinds of functions and we discuss the

six possibilities in this section.

Some researchers, e.g. [STON86b, OSBO86], have argued that one should be able to construct new

base types such as bits, bitstrings, encoded character strings, bitmaps, compressed integers, packed

decimal numbers, radix 50 decimal numbers, money, etc. Unlike most next generation DBMSs which have

a hard-wired collection of base types (typically integers, floats and character strings), POSTGRES contains

an abstract data type facility whereby any user can construct an arbitrary number of new base types. Such

types can be added to the system while it is executing and require the defining user to specify functions to

convert instances of the type to and from the character string data type. Details of the syntax appear in
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[WENS88].

The second kind of type available in POSTGRES is a constructed type.** A user can create a new

type by constructing a record of base types and instances of other constructed types. For example:

create DEPT (dname = c10, floor = integer, floorspace = polygon)

create EMP (name = c12, dept = DEPT, salary = float)

Here, DEPT is a type constructed from an instance of each of three base types, a character string, an

integer and a polygon. EMP, on the other hand, is fabricated from base types and other constructed types.

A constructed type can optionally inherit data elements from other constructed types. For example,

a SALESMAN type can be created as follows:

create SALESMAN (quota = float) inherits EMP

In this case, an instance of SALESMAN has a quota and inherits all data elements from EMP, namely

name, dept and salary. We had the standard discussion about whether to include single or multiple inheri-

tance and concluded that a single inheritance scheme would simply be too restrictive. As a result

POSTGRES allows a constructed type to inherit from an arbitrary collection of other constructed types.

When ambiguities arise because an object has multiple parents with the same field name, we elected

to refuse to create the new type. However, we isolated the resolution semantics in a single routine, which

can be easily changed to track multiple inheritance semantics as they unfold over time in programming

languages.

We now turn to the POSTGRES notion of functions. There are three different classes of

POSTGRES functions,

normal functions

operators

POSTQUEL functions

and we discuss each in turn.

A user can define an arbitrary collection of normal functions whose operands are base types or con-

structed types. For example, he can define a function, area, which maps an instance of a polygon into an

instance of a floating point number. Such functions are automatically available in the query language as

illustrated in the following example:

retrieve (DEPT.dname) where area (DEPT.floorspace) > 500

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

** In this section the reader can use the words constructed type, relation, and class interchangeably. Moreover, the words

record, instance, and tuple are similarly interchangeable. This section has been purposely written with the chosen notation to illus-

trate a point about object-oriented data bases which is discussed in Section 2.5.

5



Normal functions can be defined to POSTGRES while the system is running and are dynamically loaded

when required during query execution.

Functions are allowed on constructed types, e.g:

retrieve (EMP.name) where overpaid (EMP)

In this case overpaid has an operand of type EMP and returns a boolean. Functions whose operands are

constructed types are inherited down the type hierarchy in the standard way.

Normal functions are arbitrary procedures written in a general purpose programming language (in

our case C or LISP). Hence, they have arbitrary semantics and can run other POSTQUEL commands dur-

ing execution. Therefore, queries with normal functions in the qualification cannot be optimized by the

POSTGRES query optimizer. For example, the above query on overpaid employees will result in a

sequential scan of all employees.

To utilize indexes in processing queries, POSTGRES supports a second class of functions, called

operators. Operators are functions with one or two operands which use the standard operator notation in

the query language. For example the following query looks for departments whose floor space has a greater

area than that of a specific polygon:

retrieve (DEPT.dname) where DEPT.floorspace AGT polygon["(0,0), (1,1), (0,2)"]

The "area greater than" operator AGT is defined by indicating the token to use in the query language as

well as the function to call to evaluate the operator. Moreover, several hints can also be included in the

definition which assist the query optimizer. One of these hints is that ALE is the negator of this operator.

Therefore, the query optimizer can transform the query:

retrieve (DEPT.dname) where not (DEPT.floorspace ALE polygon["(0,0), (1,1), (0,2)"])

which cannot be optimized into the one above which can be. In addition, the design of the POSTGRES

access methods allows a B+-tree index to be constructed for the instances of floorspace appearing in DEPT

records. This index can support efficient access for the class of operators {ALT, ALE, AE, AGT, AGE}.

Information on the access paths available to the various operators is recorded in the POSTGRES system

catalogs.

As pointed out in [STON87b] it is imperative that a user be able to construct new access methods to

provide efficient access to instances of non-traditional base types. For example, suppose a user introduces a

new operator "!!" defined on polygons that returns true if two polygons overlap. Then, he might ask a

query such as:

retrieve (DEPT.dname) where DEPT.floorspace !! polygon["(0,0), (1,1), (0,2)"]

There is no B+-tree or hash access method that will allow this query to be rapidly executed. Rather, the

query must be supported by some multidimensional access method such as R-trees, grid files, K-D-B trees,
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etc. Hence, POSTGRES was designed to allow new access methods to be written by POSTGRES users

and then dynamically added to the system. Basically, an access method to POSTGRES is a collection of

13 normal functions which perform record level operations such as fetching the next record in a scan,

inserting a new record, deleting a specific record, etc. All a user need do is define implementations for

each of these functions and make a collection of entries in the system catalogs.

Operators are only available for operands which are base types because access methods traditionally

support fast access to specific fields in records. It is unclear what an access method for a constructed type

should do, and therefore POSTGRES does not include this capability.

The third kind of function available in POSTGRES is POSTQUEL functions. Any collection of

commands in the POSTQUEL query language can be packaged together and defined as a function. For

example, the following function defines the overpaid employees:

define function high-pay as retrieve (EMP.all) where EMP.salary > 50000

POSTQUEL functions can also have parameters, for example:

define function ret-sal as retrieve (EMP.salary) where EMP.name = $1

Notice that ret-sal has one parameter in the body of the function, the name of the person involved. Such

parameters must be provided at the time the function is called. A third example POSTQUEL function is:

define function set-of-DEPT as retrieve (DEPT.all) where DEPT.floor = $.floor

This function has a single parameter "$.floor". It is expected to appear in a record and receives the value of

its parameter from the floor field defined elsewhere in the same record.

Each POSTQUEL function is automatically a constructed type. For example, one can define a

FLOORS type as follows:

create FLOORS (floor = i2, depts = set-of-DEPT)

This constructed type uses the set-of-DEPT function as a constructed type. In this case, each instance of

FLOORS has a value for depts which is the value of the function set-of-DEPT for that record.

In addition, POSTGRES allows a user to form a constructed type, one or more of whose fields has

the special type POSTQUEL. For example, a user can construct the following type:

create PERSON (name = c12, hobbies = POSTQUEL)

In this case, each instance of hobbies contains a different POSTQUEL function, and therefore each person

has a name and a POSTQUEL function that defines his particular hobbies. This support for POSTQUEL as

a type allows the system to simulate non-normalized relations as found in NF**2 [DADA86].

POSTQUEL functions can appear in the query language in the same manner as normal functions.

The following example ensures that Joe has the same salary as Sam:
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replace EMP (salary = ret-sal("Joe")) where EMP.name = "Sam"

In addition, since POSTQUEL functions are a constructed type, queries can be executed against

POSTQUEL functions just like other constructed types. For example, the following query can be run on

the constructed type, high-pay:

retrieve (high-pay.salary) where high-pay.name = "george"

If a POSTQUEL function contains a single retrieve command, then it is very similar to a relational view

definition, and this capability allows retrieval operations to be performed on objects which are essentially

relational views.

Lastly, every time a user defines a constructed type, a POSTQUEL function is automatically defined

with the same name. For example, when DEPT is constructed, the following function is automatically

defined:

define function DEPT as retrieve (DEPT.all) where DEPT.OID = $1

When EMP was defined earlier in this section, it contained a field dept which was of type DEPT. In fact,

DEPT was the above automatically defined POSTQUEL function. As a result, instance of a constructed

type is available as a type because POSTGRES automatically defines a POSTQUEL function for each such

type.

POSTQUEL functions are a very powerful notion because they allow arbitrary collections of

instances of types to be returned as the value of the function. Since POSTQUEL functions can reference

other POSTQUEL functions, arbitrary structures of complex objects can be assembled. Lastly, POST-

QUEL functions allow collections of commands such as the 5 SQL commands that make up TP1

[ANON85] to be assembled into a single function and stored inside the DBMS. Then, one can execute TP1

by executing the single function. This approach is preferred to having to submit the 5 SQL commands in

TP1 one by one from an application program. Using a POSTQUEL function, one replaces 5 round trips

between the application and the DBMS with 1, which results in a 25% performance improvement in a typi-

cal OLTP application.

2.3. The POSTGRES Query Language

The previous section presented several examples of the POSTQUEL language. It is a set oriented

query language that resembles a superset of a relational query language. Besides user defined functions

and operators which were illustrated earlier, the features which have been added to a traditional relational

language include:

path expressions

support for nested queries

transitive closure
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support for inheritance

support for time travel

Path expressions are included because POSTQUEL allows constructed types which contain other

constructed types to be hierarchically referenced. For example, the EMP type defined above contains a

field which is an instance of the constructed type, DEPT. Hence, one can ask for the names of employees

who work on the first floor as follows:

retrieve (EMP.name) where EMP.dept.floor = 1

rather than being forced to do a join, e.g:

retrieve (EMP.name) where EMP.dept = DEPT.OID and DEPT.floor = 1

POSTQUEL also allows queries to be nested and has operators that have sets of instances as

operands. For example, to find the departments which occupy an entire floor, one would query:

retrieve (DEPT.dname)

where DEPT.floor NOTIN {D.floor from D in DEPT where D.dname != DEPT.dname}

In this case, the expression inside the curly braces represents a set of instances and NOTIN is an operator

which takes a set of instances as its right operand.

The transitive closure operation allows one to explode a parts or ancestor hierarchy. Consider for

example the constructed type:

parent (older, younger)

One can ask for all the ancestors of John as follows:

retrieve* into answer (parent.older)

using a in answer

where parent.younger = "John"

or parent.younger = a.older

In this case the * after retrieve indicates that the associated query should be run until answer fails to grow.

If one wishes to find the names of all employees over 40, one would write:

retrieve (E.name) using E in EMP

where E.age > 40

On the other hand, if one wanted the names of all salesmen or employees over 40, the notation is:

retrieve (E.name) using E in EMP*

where E.age > 40

Here the * after the constructed type EMP indicates that the query should be run over EMP and all
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constructed types under EMP in the inheritance hierarchy. This use of * allows a user to easily run queries

over a constructed type and all its descendents.

Lastly, POSTGRES supports the notion of time travel. This feature allows a user to run historical

queries. For example to find the salary of Sam at time T one would query:

retrieve (EMP.salary)

using EMP [T]

where EMP.name = "Sam"

POSTGRES will automatically find the version of Sam’s record valid at the correct time and get the

appropriate salary.

Like relational systems, the result of a POSTQUEL command can be added to the data base as a new

constructed type. In this case, POSTQUEL follows the lead of relational systems by removing duplicate

records from the result. The user who is interested in retaining duplicates can do so by ensuring that the

OID field of some instance is included in the target list being selected. For a full description of POST-

QUEL the interested reader should consult [WENS88].

2.4. Fast Path

There are three reasons why we chose to implement a fast path feature. First, a user who wishes to

interact with a data base by executing a sequence of functions to navigate to desired data can use fast path

to accomplish his objective. Second, there are a variety of decision support applications in which the end

user is given a specialized query language. In such environments, it is often easier for the application

developer to construct a parse tree representation for a query rather than an ASCII one. Hence, it would be

desirable for the application designer to be able to directly call the POSTGRES optimizer or executor.

Most DBMSs do not allow direct access to internal system modules.

The third reason is a bit more complex. In the persistent CLOS layer of PICASSO, it is necessary for

the run time system to assign a unique identifier (OID) to every constructed object that is persistent. It is

undesirable for the system to synchronously insert each object directly into a POSTGRES data base and

thereby assign a POSTGRES identifier to the object. This would result in poor performance in executing a

persistent CLOS program. Rather, persistent CLOS maintains a cache of objects in the address space of

the program and only inserts a persistent object into this cache synchronously. There are several options

which control how the cache is written out to the data base at a later time. Unfortunately, it is essential that

a persistent object be assigned a unique identifier at the time it enters the cache, because other objects may

have to point to the newly created object and use its OID to do so.

If persistent CLOS assigns unique identifiers, then there will be a complex mapping that must be per-

formed when objects are written out to the data base and real POSTGRES unique identifiers are assigned.

Alternately, persistent CLOS must maintain its own system for unique identifiers, independent of the
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POSTGRES one, an obvious duplication of effort. The solution chosen was to allow persistent CLOS to

access the POSTGRES routine that assigns unique identifiers and allow it to preassign N POSTGRES

object identifiers which it can subsequently assign to cached objects. At a later time, these objects can be

written to a POSTGRES data base using the preassigned unique identifiers. When the supply of identifiers

is exhausted, persistent CLOS can request another collection.

In all of these examples, an application program requires direct access to a user-defined or internal

POSTGRES function, and therefore the POSTGRES query language has been extended with:

function-name (param-list)

In this case, besides running queries in POSTQUEL, a user can ask that any function known to

POSTGRES be executed. This function can be one that a user has previously defined as a normal, operator,

or POSTQUEL function or it can be one that is included in the POSTGRES implementation.

Hence, the user can directly call the parser, the optimizer, the executor, the access methods, the

buffer manager or the utility routines. In addition he can define functions which in turn make calls on

POSTGRES internals. In this way, he can have considerable control over the low level flow of control,

much as is available through a DBMS toolkit such as Exodus [RICH87], but without all the effort involved

in configuring a tailored DBMS from the toolkit. Moreover, should the user wish to interact with his data

base by making a collection of function calls (method invocations), this facility allows the possibility. As

noted in the introduction, we do not expect this interface to be especially popular.

The above capability is called fast path because it provided direct access to specific functions

without checking the validity of parameters. As such, it is effectively a remote procedure call facility and

allows a user program to call a function in another address space rather than in its own address space.

2.5. Is POSTGRES Object-oriented?

There have been many next generation data models proposed in the last few years. Some are charac-

terized by the term "extended relational", others are considered "object-oriented" while yet others are

termed "nested relational". POSTGRES could be accurately described as an object-oriented system

because it includes unique identity for objects, abstract data types, classes (constructed types), methods

(functions), and inheritance for both data and functions. Others (e.g. [ATKI89]) are suggesting definitions

for the word "object-oriented", and POSTGRES satisfies virtually all of the proposed litmus tests.

On the other hand, POSTGRES could also be considered an extended relational system. As noted in

a previous footnote, Section 2 could have been equally well written with the word "constructed type" and

"instance" replaced by the words "relation" and "tuple". In fact, in previous descriptions of POSTGRES

[STON86], this notation was employed. Hence, others, e.g. [MAIE89] have characterized POSTGRES as

an extended relational system.
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Lastly, POSTGRES supports the POSTQUEL type, which is exactly a nested relational structure.

Consequently, POSTGRES could be classified as a nested relational system as well.

As a result POSTGRES could be described using any of the three adjectives above. In our opinion

we can interchangeably use the words relations, classes, and constructed types in describing POSTGRES.

Moreover, we can also interchangeably use the words function and method. Lastly, we can interchange-

ably use the words instance, record, and tuple. Hence, POSTGRES seems to be either object-oriented or

not object-oriented, depending on the choice of a few tokens in the parser. As a result, we feel that most of

the efforts to classify the extended data models in next generation data base systems are silly exercises in

surface syntax.

In the remainder of this section, we comment briefly on the POSTGRES implementation of OIDs

and inheritance. POSTGRES gives each record a unique identifier (OID), and then allows the application

designer to decide for each constructed type whether he wishes to have an index on the OID field. This

decision should be contrasted with most object-oriented systems which construct an OID index for all con-

structed types in the system automatically. The POSTGRES scheme allows the cost of the index to be paid

only for those types of objects for which it is profitable. In our opinion, this flexibility has been an excel-

lent decision.

Second, there are several possible ways to implement an inheritance hierarchy. Considering the

SALESMEN and EMP example noted earlier, one can store instances of SALEMAN by storing them as

EMP records and then only storing the extra quota information in a separate SALESMAN record. Alter-

nately, one can store no information on each salesman in EMP and then store complete SALESMAN

records elsewhere. Clearly, there are a variety of additional schemes.

POSTGRES chose one implementation, namely storing all SALESMAN fields in a single record.

However, it is likely that applications designers will demand several other representations to give them the

flexibility to optimize their particular data. Future implementations of inheritance will likely require

several storage options.

2.6. A Critique of the POSTGRES Data Model

There are five areas where we feel we made mistakes in the POSTGRES data model:

union types

access method interface

functions

big objects

arrays

We discuss each in turn.
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A desirable feature in any next-generation DBMS would be to support union types, i.e. an instance of

a type can be an instance of one of several given types. A persuasive example (similar to one from

[COPE84]) is that employees can be on loan to another plant or on loan to a customer. If two base types,

customer and plant exist, one would like to change the EMP type to:

create EMP (name = c12, dept = DEPT, salary = float, on-loan-to = plant or customer)

Unfortunately including union types makes a query optimizer more complex. For example, to find all the

employees on loan to the same organization one would state the query:

retrieve (EMP.name, E.name)

using E in EMP

where EMP.on-loan-to = E.on-loan-to

However, the optimizer must construct two different plans, one for employees on loan to a customer and

one for employees on loan to a different plant. The reason for two plans is that the equality operator may

be different for the two types. In addition, one must construct indexes on union fields, which entails sub-

stantial complexity in the access methods.

Union types are highly desirable in certain applications, and we considered three possible stances

with respect to union types:

1) support only through abstract data types

2) support through POSTQUEL functions

3) full support

Union types can be easily constructed using the POSTGRES abstract data type facility. If a user wants a

specific union type, he can construct it and then write appropriate operators and functions for the type. The

implementation complexity of union types is thus forced into the routines for the operators and functions

and onto the implementor of the type. Moreover, it is clear that there are a vast number of union types and

an extensive type library must be constructed by the application designer. The PICASSO team stated that

this approach placed an unacceptably difficult burden on them, and therefore position 1 was rejected.

Position 2 offers some support for union types but has problems. Consider the example of employ-

ees and their hobbies from [STON86]:

create EMP (name = c12, hobbies = POSTQUEL)

Here the hobbies field is a POSTQUEL function, one per employee, which retrieves all hobby information

about that particular employee. Now consider the following POSTQUEL query:

retrieve (EMP.hobbies.average) where EMP.name = "Fred"

In this case the field average for each hobby record will be returned whenever it is defined. Suppose, how-

ever, that average is a float for the softball hobby and an integer for the cricket hobby. In this case, the
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application program must be prepared to accept values of different types.

The more difficult problem is the following legal POSTQUEL query:

retrieve into TEMP (result = EMP.hobbies.average) where EMP.name = "Fred"

In this case, a problem arises concerning the type of the result field, because it is a union type. Hence,

adopting position 2 leaves one in an awkward position of not having a reasonable type for the result of the

above query.

Of course, position 3 requires extending the indexing and query optimization routines to deal with

union types. Our solution was to adopt position 2 and to add an abstract data type, ANY, which can hold an

instance of any type. This solution which turns the type of the result of the above query from

one-of {integer, float}

into ANY is not very satisfying. Not only is information lost, but we are also forced to include with

POSTGRES this universal type.

In our opinion, the only realistic alternative is to adopt position 3, swallow the complexity increase,

and that is what we would do in any next system.

Another failure concerned the access method design and was the decision to support indexing only

on the value of a field and not on a function of a value. The utility of indexes on functions of values is dis-

cussed in [LYNC88], and the capability was retrofitted, rather inelegantly, into one version of POSTGRES

[AOKI89].

Another comment on the access method design concerns extendibility. Because a user can add new

base types dynamically, it is essential that he also be able to add new access methods to POSTGRES if the

system does not come with an access method that supports efficient access to his types. The standard

example of this capability is the use of R-trees [GUTM84] to speed access to geometric objects. We have

now designed and/or coded three access methods for POSTGRES in addition to B+-trees. Our experience

has consistently been that adding an access method is VERY HARD. There are four problems that com-

plicate the situation. First, the access method must include explicit calls to the POSTGRES locking subsys-

tem to set and release locks on access method objects. Hence, the designer of a new access method must

understand locking and how to use the particular POSTGRES facilities. Second, the designer must under-

stand how to interface to the buffer manager and be able to get, put, pin and unpin pages. Next, the

POSTGRES execution engine contains the ‘‘state’’ of the execution of any query and the access methods

must understand portions of this state and the data structures involved. Last but not least, the designer must

write 13 non-trivial routines. Our experience so far is that novice programmers can add new types to

POSTGRES; however, it requires a highly skilled programmer to add a new access method. Put dif-

ferently, the manual on how to add new data types to POSTGRES is 2 pages long, the one for access

methods is 50 pages.
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We failed to realize the difficulty of access method construction. Hence, we designed a system that

allows end users to add access methods dynamically to a running system. However, access methods will

be built by sophisticated system programmers who could have used a simpler to build interface.

A third area where our design is flawed concerns POSTGRES support for POSTQUEL functions.

Currently, such functions in POSTGRES are collections of commands in the query language POSTQUEL.

If one defined budget in DEPT as a POSTQUEL function, then the value for the shoe department budget

might be the following command:

retrieve (DEPT.budget) where DEPT.dname = "candy"

In this case, the shoe department will automatically be assigned the same budget as the candy department.

However, it is impossible for the budget of the shoe department to be specified as:

if floor = 1 then

retrieve (DEPT.budget) where DEPT.dname = "candy"

else

retrieve (DEPT.budget) where DEPT.dname = "toy"

This specification defines the budget of the shoe department to be the candy department budget if it is on

the first floor. Otherwise, it is the same as the toy department. This query is not possible because POST-

QUEL has no conditional expressions. We had extensive discussions about this and other extensions to

POSTQUEL. Each such extension was rejected because it seemed to turn POSTQUEL into a program-

ming language and not a query language.

A better solution would be be to allow a POSTQUEL function to be expressible in a general purpose

programming language enhanced with POSTQUEL queries. Hence, there would be no distinction between

normal functions and POSTQUEL functions. Put differently, normal functions would be able to be con-

structed types and would support path expressions.

There are three problems with this approach. First, path expressions for normal functions cannot be

optimized by the POSTGRES query optimizer because they have arbitrary semantics. Hence, most of the

optimizations planned for POSTQUEL functions would have to be discarded. Second, POSTQUEL func-

tions are much easier to define than normal functions because a user need not know a general purpose pro-

gramming language. Also, he need not specify the types of the function arguments or the return type

because POSTGRES can figure these out from the query specification. Hence, we would have to give up

ease of definition in moving from POSTQUEL functions to normal functions. Lastly,, normal functions

have a protection problem because they can do arbitrary things, such as zeroing the data base. POSTGRES

deals with this problem by calling normal functions in two ways:

trusted -- loaded into the POSTGRES address space

untrusted -- loaded into a separate address space
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Hence, normal functions are either called quickly with no security or slowly in a protected fashion. No

such security problem arises with POSTQUEL functions.

An better approach might have been to support POSTQUEL functions written in the 4th generation

language (4GL) being designed for PICASSO [ROWE89]. This programming system leaves type informa-

tion in the system catalogs. Consequently, there would be no need for a separate registrations step to indi-

cate type information to POSTGRES. Moreover, a processor for the language is available for integration in

POSTGRES. It is also easy to make a 4GL "safe", i.e. unable to perform wild branches or malicious

actions Hence, there would be no security problem. Also, it seems possible that path expressions could be

optimized for 4GL functions.

Current commercial relational products seem to be moving in this direction by allowing data base

procedures to be coded in their proprietary 4th generation languages (4GLs). In retrospect we probably

should have looked seriously at designing POSTGRES to support functions written in a 4GL.

Next, POSTGRES allows types to be constructed that are of arbitrary size. Hence, large bitmaps are

a perfectly acceptable POSTGRES data type. However, the current POSTGRES user interface (portals)

allows a user to fetch one or more instances of a constructed type. It is currently impossible to fetch only a

portion of an instance. This presents an application program with a severe buffering problem; it must be

capable of accepting an entire instance, no matter how large it is. We should extend the portal syntax in a

straightforward way to allow an application to position a portal on a specific field of an instance of a con-

structed type and then specify a byte-count that he would like to retrieve. These changes would make it

much easier to insert and retrieve big fields.

Lastly, we included arrays in the POSTGRES data model. Hence, one could have specified the

SALESMAN type as:

create SALESMAN (name = c12, dept = DEPT, salary = float, quota = float[12])

Here, the SALESMAN has all the fields of EMP plus a quota which is an array of 12 floats, one for each

month of the year. In fact, character strings are really an array of characters, and the correct notation for

the above type is:

create SALESMAN (name = c[12], dept = DEPT, salary = float, quota = float[12])

In POSTGRES we support fixed and variable length arrays of base types, along with an array notation in

POSTQUEL. For example to request all salesmen who have an April quota over 1000, one would write:

retrieve (SALESMAN.name) where SALESMAN.quota[4] > 1000

However, we do not support arrays of constructed types; hence it is not possible to have an array of

instances of a constructed type. We omitted this capability only because it would have made the query

optimizer and executor somewhat harder. In addition, there is no built-in search mechanism for the
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elements of an array. For example, it is not possible to find the names of all salesmen who have a quota

over 1000 during any month of the year. In retrospect, we should included general support for arrays or no

support at all.

3. THE RULES SYSTEM

3.1. Introduction



employees in the shoe department have a steel desk

employees over 40 have a wood desk

employees in the candy department do not have a desk

To retrieve the kind of a desk that Sam has, one must run the following three queries:

retrieve (desk = ‘‘steel’’) where EMP.name = ‘‘Sam’’ and EMP.dept = ‘‘shoe’’

retrieve (desk = ‘‘wood’’) where EMP.name= ‘‘Sam’’ and EMP.age > 40

retrieve (desk = null) where EMP.name = ‘‘Sam’’ and EMP.dept = ‘‘candy’’

Hence, a user query must be rewritten for each rule, resulting in a serious degradation of performance

unless all queries are processed as a group using multiple query optimization techniques [SELL86].

Moreover, a query rewrite system has great difficulty with exceptions [BORG85]. For example con-

sider the rule ‘‘all employees have a steel desk’’ together with the exception ‘‘Jones is an employee who

has a wood desk’’. If one ask for the kind of desk and age for all employees over 35, then the query must

be rewritten as the following 2 queries:

retrieve (desk = "steel", EMP.age) where EMP.age > 35 and EMP.name != "Jones"

retrieve (desk = "wood", EMP.age) where EMP.age > 35 and EMP.name = "Jones"

In general, the number of queries as well as the complexity of their qualifications increases linearly with

the number of rules. Again, this will result in bad performance unless multiple query optimization tech-

niques are applied.

Lastly, a query rewrite system does not offer any help in resolving situations when the rules are

violated. For example, the above referential integrity rule is silent on what to do if a user tries to insert an

employee into a non-existent department.

On the other hand, one could adopt a trigger implementation based on individual record accesses

and updates to the data base. Whenever a record is accessed, inserted, deleted or modified, the low level

execution code has both the old record and the new record readily available. Hence, assorted actions can

easily be taken by the low level code. Such an implementation requires the rule firing code to be placed

deep in the query execution routines. It will work well if there are many rules each affecting only a few

instances, and it is easy to deal successfully with conflict resolution at this level. However, rule firing is

deep in the executor, and it is thereby impossible for the query optimizer to construct an efficient execution

plan for a chain of rules that are awakened.

Hence, this implementation complements a query rewrite scheme in that it excels where a rewrite

scheme is weak and vica-versa. Since we wanted to have a single rule system, it was clear that we needed

to provide both styles of implementation.
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A third issue that we faced was the paradigm for the rules system. A conventional production system

consisting of collections of if-then rules has been explored in the past [ESWA76, STON82], and is a

readily available alternative. However, such a scheme lacks expressive power. For example, suppose one

wants to enforce a rule that Joe makes the same salary as Fred. In this case, one must specify two different

if-then rules. The first one indicates the action to take if Fred receives a raise, namely to propagate the

change on to Joe. The second rule specifies that any update to Joe’s salary must be refused. Hence, many

user rules require two or more if-then specifications to achieve the desired effect.

The intent in POSTGRES was to explore a more powerful paradigm. Basically, any POSTGRES

command can be turned into a rule by changing the semantics of the command so that it is logically either

always running or never running. For example, Joe may be specified to have the same salary as Fred by

the rule:

always replace EMP (salary = E.salary)

using E in EMP

where EMP.name = "Fred" and E.name = "Joe"

This single specification will propagate Joe’s salary on to Fred as well as refuse direct updates to Fred’s

salary. In this way a single ‘‘always’’ rule replaces the two statements needed in a production rule syntax.

Moreover, to efficiently support the triggering implementation where there are a large number of

rules present for a single constructed type, each of which applies to only a few instances, the POSTGRES

team designed a sophisticated marking scheme whereby rule wake-up information is placed on individual

instances. Consequently, regardless of the number of rules present for a single constructed type, only those

which actually must fire will be awakened. This should be contrasted to proposals without such data struc-

tures, which will be hopelessly inefficient whenever a large number of rules are present for a single con-

structed type.

Lastly, the decision was made to support the query rewrite scheme by escalating markers to the con-

structed type level. For example, consider the rule:

always replace EMP (age = 40) where name != "Bill"

This rule applies to all employees except Bill and it would be a waste of space to mark each individual

employee. Rather, one would prefer to set a single marker in the system catalogs to cover the whole con-

structed type implicitly. In this case, any query, e.g:

retrieve (EMP.age) where EMP.name = "Sam"

will be altered prior to execution by the query rewrite implementation to:

retrieve (age = 40) where EMP.name = "Sam" and EMP.name != "Bill"
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At the current time much of the POSTGRES Rules System (PRS) as described in [STON88] is

operational, and there are three aspects of the design which we wish to discuss in the next three subsec-

tions, namely:

complexity

absence of needed function and

efficiency

Then, we close with the second version of the POSTGRES Rules system (PRS II) which we are currently

designing. This rules system is described in more detail in [STON89, STON89b].

3.2. Complexity

The first problem with PRS is that the implementation is exceedingly complex. It is difficult to

explain the marking mechanisms that cause rule wake-up even to a sophisticated person. Moreover, some

of us have an uneasy feeling that the implementation may not be quite correct. The fundamental problem

can be illustrated using the Joe-Fred example above. First, the rule must be awakened and run whenever

Fred’s salary changes. This requires that one kind of marker be placed on the salary of Fred. However, if

Fred is given a new name, say Bill, then the rule must be deleted and reinstalled. This requires a second

kind of marker on the name of Fred. Additionally, it is inappropriate to allow any update to Joe’s salary;

hence a third kind of marker is required on that field. Furthermore, if Fred has not yet been hired, then the

rule must take effect on the insertion of his record. This requires a marker to be placed in the index for

employee names. To support rules that deal with ranges of values, for example:

always replace EMP (age = 40)

where EMP.salary > 50000 and EMP.salary < 60000

we require that two ‘‘stub’’ markers be placed in the index to denote the ends of the scan. In addition, each

intervening index record must also be marked. Ensuring that all markers are correctly installed and

appropriate actions taken when record accesses and updates occur has been a challenge.

Another source of substantial complexity is the necessity to deal with priorities. For example, con-

sider a second rule:

always replace EMP (age = 50) where EMP.dept = "shoe"

In this case a highly paid shoe department employee would be given two different ages. To alleviate this

situation, the second rule could be given a higher priority, e.g:

always replace EMP (age = 50) where EMP.dept = "shoe"

priority = 1

The default priority for rules is 0; hence the first rule would set the age of highly paid employees to 40

unless they were in the shoe department, in which case their age would be set to 50 by the second rule.
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Priorities, of course, add complications to the rules system. For example, if the second rule above is

deleted, then the first rule must be awakened to correct the ages of employees in the shoe department.

Another aspect of complexity is our decision to support both early and late evaluation of rules. Con-

sider the example rule that Joe makes the same salary as Fred. This rule can be awakened when Fred gets a

salary adjustment, or activation can be delayed until a user requests the salary of Joe. Activation can be

delayed as long as possible in the second case, and we term this late evaluation while the former case is

termed early evaluation. This flexibility also results in substantial extra complexity. For example, certain

rules cannot be activated late. If salaries of employees are indexed, then the rule that sets Joe’s salary to

that of Fred must be activated early because the index must be kept correct. Moreover, it is impossible for

an early rule to read data that is written by a late rule. Hence, additional restrictions must be imposed.

Getting PRS correct has entailed uncounted hours of discussion and considerable implementation

complexity. The bottom line is that the implementation of a rule system that is clean and simple to the user

is, in fact, extremely complex and tricky. Our personal feeling is that we should have embarked on a more

modest rules system.

3.3. Absence of Needed Function

The definition of a useful rules system is one that can handle at least all of the following problems in

one integrated system:

support for views

protection

referential integrity

other integrity constraints

We focus in this section on support for views. The query rewrite implementation of a rules system should

be able to translate queries on views into queries on real objects. In addition, updates to views should be

similarly mapped to updates on real objects.

There are various special cases of view support that can be performed by PRS, for example material-

ized views. Consider the following view definition:

define view SHOE-EMP (name = EMP.name, age = EMP.age, salary = EMP.salary)

where EMP.dept = ‘‘shoe’’

The following two PRS rules specify a materialization of this view:

always append to SHOE-EMP (name = EMP.name, salary = EMP.salary) where EMP.dept = ‘‘shoe’’

always delete SHOE-EMP where SHOE-EMP.name not-in {EMP.name where EMP.dept = ‘‘shoe’’}

In this case, SHOE-EMP will always contain a correct materialization of the shoe department employees,

and queries can be directed to this materialization.
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However, there seemed to be no way to support updates on views that are not materialized. One of

us has spent countless hours attempting to support this function through PRS and failed. Hence, inability to

support operations conventional views is a major weakness of PRS.

3.4. Implementation Efficiency

The current POSTGRES implementation uses markers on individual fields to support rule activation.

The only escalation supported is to convert a collection of field level markers to a single marker on the

entire constructed type. Consequently, if a rule covers a single instance, e.g:

always replace EMP (salary = 1000) where EMP.name = "Sam"

then a total of 3 markers will be set, one in the index, one on the salary field and one on the name field.

Each marker is composed of:

rule-id -- 6 bytes

priority -- 1 byte

marker-type -- 1 byte

Consequently, the marker overhead for the rule is 24 bytes, Now consider a more complex rule:

always replace EMP (salary = 1000) where EMP.dept = "shoe"

If 1000 employees work in the shoe department, then 24,000 bytes of overhead will be consumed in mark-

ers. The only other option is to escalate to a marker on the entire constructed type, in which case the rule

will be activated if any salary is read or written and not just for employees in the shoe department. This

will be an overhead intensive option. Hence, for rules which cover many instances but not a significant

fraction of all instances, the POSTGRES implementation will not be very space efficient.

We are considering several solutions to this problem. First, we have generalized B+-trees to

efficiently store interval data as well as point data. Such ‘‘segmented B+-trees’’ are the subject of a

separate paper [KOLE89]. This will remove the space overhead in the index for the dominant form of

access method. Second, to lower the overhead on data records, we will probably implement markers at the

physical block level as well as at the instance and constructed type levels. The appropriate extra granulari-

ties are currently under investigation.

3.5. The Second POSTGRES Rules System

Because of the inability of the current rules paradigm to support views and to a lesser extent the fun-

damental complexity of the implementation, we are converting to a second POSTGRES rules system (PRS

II). This rules system has much in common with the first implementation, but returns to the traditional pro-

duction rule paradigm to obtain sufficient control to perform view updates correctly. This section outlines

our thinking, and a complete proposal appears in [STON89b].
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The production rule syntax we are using in PRS II has the form:

ON event TO object WHERE POSTQUEL-qualification

THEN DO POSTQUEL-command(s)

Here, event is retrieve, replace, delete, append, new (i. e. replace or append) or old (i.e. delete or replace).

Moreover, object is either the name of a constructed type or constructed-type.column. POSTQUEL-

qualification is a normal qualification, with no additions or changes. Lastly, POSTQUEL-commands is a

set of POSTQUEL commands with the following two changes:

NEW, OLD or CURRENT can appear instead of the name of a constructed type in front of

any attribute.

refuse (target-list) is added as a new POSTQUEL command

In this notation we would specify the "Fred-Joe" rule as:

on NEW EMP.salary where EMP.name = "Fred"

then do

replace E (salary = CURRENT.salary)

using E in EMP

where E.name = "Joe"

on NEW EMP.salary where EMP.name = "Joe"

then do

refuse

Notice, that PRS II is less powerful than the "always" system because the Fred-Joe rule require two

specifications instead of one.

PRS II has both a query rewrite implementation and a trigger implementation, and it is an optimiza-

tion decision which one to use as noted in [STON89b]. For example, consider the rule:

on retrieve to SHOE-EMP

then do

retrieve (EMP.name, EMP.age, EMP.salary) where EMP.dept = "shoe"

Any query utilizing such a rule, e.g:

retrieve (SHOE-EMP.name) where SHOE-EMP.age < 40

would be processed by the rewrite implementation to:

retrieve (EMP.name) where EMP.age < 40 and EMP.dept = ‘‘shoe’’

As can be seen, this is identical to the query modification performed in relational view processing
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techniques [STON75]. This rule could also be processed by the triggering system, in which case the rule

would materialize the records in SHOE-EMP iteratively.

Moreover, it is straightforward to support additional functionality, such as allowing multiple queries

in the definition of a view. Supporting materialized views can be efficiently done by caching the action part

of the above rule, i.e. executing the command before a user requests evaluation. This corresponds to mov-

ing the rule to early evaluation. Lastly, supporting views that are partly materialized and partly specified as

procedures as well as views that involve recursion appears fairly simple. In [STON89b] we present details

on these extensions.

Consider the following collection of rules that support updates to SHOE-EMP:

on NEW SHOE-EMP

then do

append to EMP (name = NEW.name, salary = NEW.salary)

on OLD SHOE-EMP

then do

delete EMP where EMP.name = OLD.name and EMP.salary = OLD.salary

on UPDATE to SHOE-EMP

then do

replace EMP (name = NEW.name, salary = NEW.salary)

where EMP.name = NEW.name

If these rules are processed by the trigger implementation, then an update to SHOE-EMP, e.g:

replace SHOE-EMP (salary = 1000) where SHOE-EMP.name = ‘‘Mike’’

will be processed normally until it generates a collection of

[new-record, old-record]

pairs. At this point the triggering system can be activated to make appropriate updates to underlying con-

structed types. Moreover, if a user wishes non-standard view update semantics, he can perform any particu-

lar actions he desires by changing the action part of the above rules.

PRS II thereby allows a user to use the rules system to define semantics for retrievals and updates to

views. In fact, we expect to build a compiler that will convert a higher level view notration into the needed

collection of PRS II rules. In addition, PRS II retains all functionality of the first rules system, so protec-

tion, alerters integrity constraints, and arbitrary triggers are readily expressed. The only disadvantage is that

PRS II requires two rules to perform many tasks expressible as a single PRS rule. To overcome this disad-

vantage, we will likely continue to support the PRS syntax in addition to the PRS II syntax and compile
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PRS into PRS II. support

PRS II can be supported by the same implementation that we proposed for the query rewrite imple-

mentation of PRS, namely marking instances in the system catalogs. Moreover, the query rewrite algo-

rithm is nearly the same as in the first implementation. The triggering system can be supported by the same

instance markers as in PRS. In fact, the implementation is bit simpler because a couple of the types of

markers are not required. Because the implementation of PRS II is so similar to our initial rules system, we

expect to have the conversion completed in the near future.

4. STORAGE SYSTEM

4.1. Introduction

When considering the POSTGRES storage system, we were guided by a missionary zeal to do some-

thing different. All current commercial systems use a storage manager with a write-ahead log (WAL), and

we felt that this technology was well understood. Moreover, the original INGRES prototype from the

1970s used a similar storage manager, and we had no desire to do another implementation.

Hence, we seized on the idea of implementing a ‘‘no-overwrite’’ storage manager. Using this tech-

nique the old record remains in the data base whenever an update occurs, and serves the purpose normally

performed by a write-ahead log. Consequently, POSTGRES has no log in the conventional sense of the

term. Instead the POSTGRES log is simply 2 bits per transaction indicating whether each transaction com-

mitted, aborted, or is in progress.

Two very nice features can be exploited in a no-overwrite system. First, aborting a transaction can

be instantaneous because one does not need to process the log undoing the effects of updates; the previous

records are readily available in the data base. More generally, to recover from a crash, one must abort all

the transactions in progress at the time of the crash. This process can be effectively instantaneous in

POSTGRES.

The second benefit of a no-overwrite storage manager is the possibility of time travel. As noted ear-

lier, a user can ask a historical query and POSTGRES will automatically return information from the

record valid at the correct time.

This storage manager should be contrasted with a conventional one where the previous record is

overwritten with a new one. In this case a write-ahead log is required to maintain the previous version of

each record. There is no possibility of time travel because the log cannot be queried since it is in a dif-

ferent format. Moreover, the data base must be restored to a consistent state when a crash occurs by pro-

cessing the log to undo any partially completed transactions. Hence, there is no possibility of instantaneous

crash recovery.
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Clearly a no-overwrite storage manager is superior to a conventional one if it can be implemented at

comparable performance. There is a brief hand-wave of an argument in [STON87] that alleges this might

be the case. In our opinion, the argument hinges around the existence of stable main memory. In the

absence of stable memory, a no-overwrite storage manager must force to disk at commit time all pages

written by a transaction. This is required because the effects of a committed transaction must be durable in

case a crash occurs and main memory is lost. A conventional data manager on the other hand, need only

force to disk at commit time the log pages for the transaction’s updates. Even if there are as many log

pages as data pages (a highly unlikely occurence), the conventional storage manager is doing sequential

I/O to the log while a no-overwrite storage manager is doing random I/O. Since sequential I/O is substan-

tially faster than random I/O, the no-overwrite solution is guaranteed to offer worse performance.

However, if stable main memory is present then neither solution must force pages to disk. In this

environment, performance should be comparable. Hence, with stable main memory it appears that a no-

overwrite solution is competitive. As computer manufacturers offer some form of stable main memory, a

no-overwrite solution may become a viable storage option.

In designing the POSTGRES storage system, we were guided by two philosophical premises. First,

we decided to make a clear distinction between current data and historical data. We expected access pat-

terns to be highly skewed toward current records. In addition, queries to the archive might look very dif-

ferent from those accessing current data. For both reasons, POSTGRES maintains two different physical

collections of records, one for the current data and one for historical data, each with its own indexes.

Second, our design assumes the existence of a randomly addressable archive device on which histori-

cal records are placed. Our intuitive model for this archive is an optical disk. Our design was purposely

made consistent with an archive that has a write-once-read-many (WORM) orientation. This characterizes

many of the optical disks on the market today.

In the next subsection we indicate two problems with the POSTGRES design. Then, in Section 5.3

we make additional comments on the storage manager.

4.2. Problems in the POSTGRES Design

There are at least two problems with our design. First, it is unstable under heavy load. An asynchro-

nous demon, known as vacuum cleaner, is responsible for moving historical records from the magnetic disk

structure holding the current records to the archive where historical records remain. Under normal cir-

cumstances, the magnetic disk portion of each constructed type is (say) only 1.1 times the minimum possi-

ble size of the constructed type. Of course, the vacuum cleaner consumes CPU and I/O resources running

in background achieving this goal. However, if the load on a POSTGRES data base increases, then the

vacuum cleaner may not get to run. In this case the magnetic disk portion of a constructed type will

increase, and performance will suffer because the execution engine must read historical records on the
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magnetic disk during the (presumably frequent) processing of queries to the current data base. As a result,

performance will degrade proportionally to the excess size of the magnetic disk portion of the data base.

As load increases, the vacuum cleaner gets less resources, and performance degrades as the size of the

magnetic disk data base increases. This will ultimately result in a POSTGRES data base going into melt-

down.

Obviously, the vacuum cleaner should be run in background if possible so that it can consume

resources at 2:00 A.M. when there is little other activity. However, if there is consistent heavy load on a

system, then the vacuum cleaner must be scheduled at the same priority as other tasks, so the above insta-

bility does not occur. The bottom line is that scheduling the vacuum cleaner is a tricky optimization prob-

lem.

The second comment which we wish to make is that future archive systems are likely to be

read/write, and rewritable optical disks have already appeared on the market. Consequently, there is no rea-

son for us to have restricted ourselves to WORM technology. Certain POSTGRES assumptions were

therefore unnecessary, such as requiring the current portion of any constructed type to be on magnetic disk.

4.3. Other Comments

Historical indexes will usually be on a combined key consisting of a time range together with one or

more keys from the record itself. Such two-dimensional indexes can be stored using the technology of R-

trees [GUTM84], R+-trees [FALO87] or perhaps in some new way. We are not particularly comfortable

that good ways to index time ranges have been found, and we encourage additional work in this area. A

possible approach is segmented R-trees which we are studying [KOLE89].

Another comment concerns POSTGRES support for time travel. There are many tasks that are very

difficult to express with our mechanisms. For example, the query to find the time at which Sam’s salary

increased from $5000 to $6000 is very tricky in POSTQUEL.

A last comment is that time travel can be implemented with a conventional transaction system using

a write ahead log. For example, one need only have an ‘‘archive’’ constructed type for each physical con-

structed type for which time travel is desired. When a record is updated, its previous value is written in the

archive with the appropriate timestamps. If the transaction fails to commit, this archive insert and the

corresponding record update is unwound using a conventional log. Such an implementation may well have

substantial benefits, and we should have probably considered such a possibility. In making storage system

decisions we were guided by a missionary zeal to do something different than a conventional write ahead

log scheme. Hence, we may have overlooked other intriguing options.
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5. THE POSTGRES IMPLEMENTATION

5.1. Introduction

POSTGRES contains a fairly conventional parser, query optimizer and execution engine. Two

aspects of the implementation deserve special mention,

dynamic loading and the process structure

choice of implementation language

and we discuss each in turn.

5.2. Dynamic Loading and Process Structure

POSTGRES assumes that data types, operators and functions can be added and subtracted dynami-

cally, i.e. while the system is executing. Moreover, we have designed the system so that it can accommo-

date a potentially very large number of types and operators. Consequently, the user functions that support

the implementation of a type must be dynamically loaded and unloaded. Hence, POSTGRES maintains a

cache of currently loaded functions and dynamically moves functions into the cache and then ages them

out of the cache. Moreover, the parser and optimizer run off of a main memory cache of information about

types and operators. Again this cache must be maintained by POSTGRES software. It would have been

much easier to assume that all types and operators were linked into the system at POSTGRES initialization

time and have required a user to reinstall POSTGRES when he wished to add or drop types. Moreover,

users of prototype software are not running systems which cannot go down for rebooting. Hence, the func-

tion is not essential.

Second, the rules system forces significant complexity on the design. A user can add a rule such as:

always retrieve (EMP.salary)

where EMP.name = "Joe"

In this case his application process wishes to be notified of any salary adjustment to Joe. Consider a second

user who gives Joe a raise. The POSTGRES process that actually does the adjustment will notice that a

marker has been placed on the salary field. However, in order to alert the first user, one of four things must

happen:

a) POSTGRES could be designed as a single server process. In this case within the current process the first

user’s query could simply be activated. However, such a design is incompatible with running on a shared

memory multiprocessor, where a so-called multi-server is required. Hence, this design was discarded.

b) The POSTGRES process for the second user could run the first user’s query and then connect to his

application process to deliver results. This requires that an application process be coded to expect
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communication from random other processes. We felt this was too difficult to be a reasonable solution.

c) The POSTGRES process for the second user could connect to the input socket for the first user’s

POSTGRES and deliver the query to be run. The first POSTGRES would run the query and then send

results to the user. This would require careful synchronization of the input socket among multiple indepen-

dent command streams. Moreover, it would require the second POSTGRES to know the portal name on

which the first user’s rule was running.

d) The POSTGRES process for the second user could alert a special process called the POSTMASTER.

This process would in turn alert the process for the first user where the query would be run and the results

delivered to the application process.

We have adopted the fourth design as the only one we thought was practical. However, we have thereby

constructed a process through which everybody must channel communications. If the POSTMASTER

crashes, then the whole POSTGRES environment must be restarted. This is a handicap, but we could think

of no better solution. Moreover, there are a collection of system demons, including the vacuum cleaner

mentioned above, which need a place to run. In POSTGRES they are run as subprocesses managed by the

POSTMASTER.

A last aspect of our design concerns the operating system process structure. Currently, POSTGRES

runs as one process for each active user. This was done as an expedient to get a system operational as

quickly as possible. We plan on converting POSTGRES to use lightweight processes available in the

operating systems we are using. These include PRESTO for the Sequent Symmetry and threads in Version

4 of Sun/OS.

5.3. Programming Language Used

At the beginning of the project, we were forced to make a commitment to a programming language

and machine environment. The machine was an easy one, since SUN workstations were nearly

omnipresent at Berkeley, and any other choice would have been non-standard. However, we were free to

choose any language in which to program. We considered the following:

C

C++

MODULA 2+

LISP

ADA

SMALLTALK
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We dismissed SMALLTALK quickly because we felt it was too slow and compilers were not readily avail-

able for a wide variety of platforms. We felt it desirable to keep open the option of distributing our

software widely. We felt ADA and MODULA 2+ offered limited advantages over C++ and were not

widely used in the Berkeley environment. Hence, obtaining pretrained programmers would have been a

problem. Lastly, we were not thrilled to use C, since INGRES had been coded in C and we were anxious

to choose a different language, if only for the sake of doing something different. At the time we started

(10/85), there was not a stable C++ compiler, so we did not seriously consider this option.

By a process of elimination, we decided to try writing POSTGRES in LISP. We expected that it

would be especially easy to write the optimizer and inference engine in LISP, since both are mostly tree

processing modules. Moreover, we were seduced by AI claims of high programmer productivity for appli-

cations written in LISP.

We soon realized that parts of the system were more easily coded in C, for example the buffer

manager which moves 8K pages back and forth to the disk and uses a modified LRU algorithm to control

what pages are resident. Hence, we adopted the policy that we would use both C and LISP and code

modules of POSTGRES in whichever language was most appropriate. By the time Version 1 was opera-

tional, it contained about 17000 lines of LISP and about 63000 lines of C.

Our feeling is that the use of LISP has been a terrible mistake for several reasons. First, current LISP

environments are very large. To run a ‘‘nothing’’ program in LISP requires about 3 mbytes of address

space. Hence, POSTGRES exceeds 4 mbytes in size, all but 1 mbyte is the LISP compiler, editor and

assorted other non required (or even desired) functions. Hence, we suffer from a gigantic footprint.

Second, a DBMS never wants to stop when garbage collection happens. Any response time sensitive pro-

gram must therefore allocate and deallocate space manually, so that garbage collection never happens dur-

ing normal processing. Consequently, we spent extra effort ensuring that LISP garbage collection is not

used by POSTGRES. Hence, this aspect of LISP, which improves programmer productivity, was not avail-

able to us. Third, LISP execution is slow. As noted in the performance figures in the next section our LISP

code is more than twice as slow as the comparable C code. Of course, it is possible that we are not skilled

LISP programmers or do not know how to optimize the language; hence our experience should be suitably

discounted.

However, none of these irritants was the real disaster. We have found that debugging a two language

system is extremely difficult. The C debugger, of course, knows nothing about LISP while the LISP

debugger knows nothing about C. As a result, we have found debugging POSTGRES to be a painful and

frustrating task. Memory allocation bugs were among the most painful since LISP and C have very dif-

ferent models of dynamic memory. Of course, it is true that the optimizer and inference engine were easier

to code in LISP. Hence, we saved some time there. However, this was more than compensated by the

requirement of writing a lot of utility code that would convert LISP data structures into C and vica versa.
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In fact, our assessment is that the primary productivity increases in LISP come from the nice programming

environment (e.g. interactive debugger, nice workstation tools, etc.) and not from the language itself.

Hence, we would encourage the implementors of other programming languages to study the LISP environ-

ment carefully and implement the better ideas.

As a result we have just finished moving our 17000 lines of LISP to C to avoid the debugging hassle

and secondarily to avoid the performance and footprint problems in LISP. Our experience with LISP and

two language systems has not been positive, and we would caution others not to follow in our footsteps.

6. STATUS AND PERFORMANCE

At the current time (October 1989) the LISP-less Version 1 of POSTGRES has been in the hands of

users for a short time, and we are shaking the last bugs out of the C port. In addition, we have designed all

of the additional functionality to appear in Version 2. The characteristics of Version 1 are:

a) The query language POSTQUEL runs except for aggregates, functions and set operators.

b) All object management capabilities are operational except POSTQUEL types.

c) Some support for rules exists. Specifically, replace always commands are operational; however the

implementation currently only supports early evaluation and only with markers on whole columns.

d) The storage system is complete. However, we are taking delivery shortly on an optical disk jukebox,

and so the archive is currently not implemented on a real optical disk. Moreover, R-trees to support time

travel are not yet implemented.

e) Transaction management runs.

The focus has been on getting the function in POSTGRES to run. So far, only minimal attention has

been paid to performance. Figure 1 shows assorted queries in the Wisconsin benchmark and gives results

for three systems running on a SUN 3/280. All numbers are run on a non-quiescent system so there may be

significant fluctuations. The first two are the C and LISP versions of POSTGRES. These are functionally

identical systems with the same algorithms embodied in the code. The footprint of the LISP system is

about 4.5 Mbytes while the C system is about 1 Mbyte. For comparison purposes we also include the per-

formance numbers for the commercial version of INGRES in the third column. As can be seen, the LISP

system is several times slower than the C system. In various other benchmarks we have never seen the C
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POSTGRES POSTGRES INGRES

C-based LISP-based RTI 5.0

nullqry 0.4 0.3 0.2

scan 10Ktups 36. 180. 5.2

retrieve into query

1% selectivity 38. n/a 9.9

append to 10Ktup 4.7 180. 0.4

delete from 10Ktup 37. n/a 5.7

replace in 10Ktup 42. 280. 5.7

A Comparison of INGRES and POSTGRES

(Times are listed in seconds per query.)

Figure 1
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system less than twice as fast as the LISP system. Moreover, the C system is several times slower than a

commercial system. The Public domain version of INGRES that we worked on in the mid 1970’s is about

a factor of two slower than commercial INGRES. Hence, it appears that POSTGRES s about one-half the

speed of the original INGRES. There are substantial inefficiencies in POSTGRES, especially in the code

which checks that a retrieved record is valid. We expect that subsequent tuning will get us somewhere in

between the performance of Public domain INGRES and RTI INGRES.

7. CONCLUSIONS

In this section we summarize our opinions about certain aspects of the design of POSTGRES. First,

we are uneasy about the complexity of the POSTGRES data model. The comments in Section 2 all contain
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suggestions to make it more complex. Moreover, other research teams have tended to construct even more

complex data models, e.g. EXTRA [CARE88]. Consequently, a simple concept such as referential

integrity, which can be done in only one way in existing commercial systems, can be done in several dif-

ferent ways in POSTGRES. For example, the user can implement an abstract data type and then do the

required checking in the input conversion routine. Alternately, he can use a rule in the POSTGRES rules

system. Lastly, he can use a POSTQUEL function for the field that corresponds to the foreign key in a

current relational system. There are complex performance tradeoffs between these three solutions, and a

decision must be made by a sophisticated application designer. We fear that real users, who have a hard

time with data base design for existing relational systems, will find the next-generation data models, such

as the one in POSTGRES, impossibly complex. The problem is that applications exist where each

representation is the only acceptable one. The demand for wider application of data base technology

ensures that vendors will produce systems with these more complex data models.

Another source of uneasiness is the fact that rules and POSTQUEL functions have substantial over-

lap in function. For example, a POSTQUEL function can be simulated by one rule per record, albeit at

some performance penalty. On the other hand, all rules, except retrieve always commands, can be alter-

nately implemented using POSTQUEL functions. We expect to merge the two concepts in Version 2, and

our proposal appears in [STON89b].

In the areas of rules and storage management, we are basically satisfied with POSTGRES capabili-

ties. The syntax of the rule system should be changed as noted in Section 3; however this is not a

significant issue and it should be available easily in Version 2. The storage manager has been quite simple

to implement. Crash recovery code has been easy to write because the only routine which must be care-

fully written is the vacuum cleaner. Moreover, access to past history seems to be a highly desirable capa-

bility.

Furthermore, the POSTGRES implementation certainly erred in the direction of excessive sophistica-

tion. For example, new types and functions can be added on the fly without recompiling POSTGRES. It

would have been much simpler to construct a system that required recompilation to add a new type.

Second, we have implemented a complete transaction system in Version 1. Other prototypes tend to

assume a single user environment. In these and many other ways, we strove for substantial generality;

however the net effect has been to slow down the implementation effort and make the POSTGRES inter-

nals much more complex. As a result, POSTGRES has taken us considerably longer to build than the ori-

ginal version of INGRES. One could call this the ‘‘second system’’ effect. It was essential that

POSTGRES be more usable than the original INGRES prototype in order for us to feel like we were mak-

ing a contribution.

A last comment concerns technology transfer to commercial systems. It appears that the process is

substantially accelerating. For example, the relational model was constructed in 1970, first prototypes of
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implementations appeared around 1976-77, commercial versions first surfaced around 1981 and popularity

of relational systems in the marketplace occurred around 1985. Hence, there was a 15 year period during

which the ideas were transferred to commercial systems. Most of the ideas in POSTGRES and in other

next generation systems date from 1984 or later. Commercial systems embodying some of these ideas

have already appeared and major vendors are expected to have advanced systems within the next year or

two. Hence, the 15 year period appears to have shrunk to less than half that amount. This acceleration is

impressive, but it will lead to rather short lifetimes for the current collection of prototypes.
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